Definition 1 : Given integers a and m, with $m>0$,
$a \bmod m$ is defined to be the remainder when a is divided by m.

Definition 2: If two integers x and y have the same remainder when $n \mid x$ and $n \mid y$ for a positive integer n, then x and y are equivalent modulo n (or x equals $y \bmod n$).

- We write either " $x \bmod n \equiv y \bmod n$ " or " $x \equiv y \bmod n$ ".
$-x \equiv y(\bmod \mathrm{n})$
: we also read " x is congruent to y modulo (or mod) n.

Example

(1) $12 \bmod 5$
(2) $139 \bmod 3$
(3) $1142 \equiv x \bmod 5$. Find x for $x \in\{x \in \mathbb{Z} \mid 10 \leq x \leq 15\}$.

Theorem 1. Given integers a, b, and m,

1. $a \equiv b \bmod m$ if and only if $a-b=k \cdot m$ for some integer k.
2. If $a \equiv b \bmod m$ and $c \equiv d \bmod m$, then
(1) $a+c \equiv b+d \bmod m$.
(2) $a \cdot c \equiv b \cdot d \bmod m$.

Theorem 2. If n is a square number, then $n \bmod 4$ is 0 or 1 .

Theorem 3. Let $a, b, c \in \mathbb{Z}$ with $c \neq 0$. Then the equation

$$
a x \equiv b \bmod c
$$

has a solution x if and only if $\operatorname{gcd}(a, c) \mid b$.

Exercise If a function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by

$$
f(a)=a \bmod m
$$

then is a function f one-to-one? onto? What is its range?

Fermat's Little Theorem. Let p be a prime number, then $x^{p} \equiv x \bmod p$ for all $x \in \mathbb{Z}$.

Read the proof in the textbook and be prepared to discuss the proof in class.
Using Fermat's Little Theorem, prove the following.
Corollary. Let p be a prime number and $p \nmid x$. Then $x^{p-1} \equiv 1 \bmod p$.

