Definition 1 : Given integers a and m, with m > 0, a **mod** m is defined to be the remainder when a is divided by m.

Definition 2 : If two integers x and y have the same remainder when $n \mid x$ and $n \mid y$ for a positive integer n, then x and y are **equivalent modulo** n (or x equals $y \mod n$). – We write either " $x \mod n \equiv y \mod n$ " or " $x \equiv y \mod n$ ". – $x \equiv y \pmod{n}$: we also read "x is congruent to y modulo (or mod) n.

Example

 $(1) 12 \mod 5$

- (2) 139 mod 3
- (3) $1142 \equiv x \mod 5$. Find x for $x \in \{x \in \mathbb{Z} | 10 \le x \le 15\}$.

Theorem 1. Given integers a, b, and m,

1. $a \equiv b \mod m$ if and only if $a - b = k \cdot m$ for some integer k.

- 2. If $a \equiv b \mod m$ and $c \equiv d \mod m$, then
 - (1) $a + c \equiv b + d \mod m$.

(2) $a \cdot c \equiv b \cdot d \mod m$.

Theorem 2. If n is a square number, then $n \mod 4$ is 0 or 1.

Theorem 3. Let $a, b, c \in \mathbb{Z}$ with $c \neq 0$. Then the equation

 $ax \equiv b \mod c$

has a solution x if and only if $gcd(a, c) \mid b$.

Exercise If a function $f : \mathbb{Z} \to \mathbb{Z}$ is defined by

 $f(a) = a \mod m$

then is a function f one-to-one? onto? What is its range?

Fermat's Little Theorem. Let p be a prime number, then $x^p \equiv x \mod p$ for all $x \in \mathbb{Z}$.

Read the proof in the textbook and be prepared to discuss the proof in class.

Using Fermat's Little Theorem, prove the following.

Corollary. Let p be a prime number and $p \nmid x$. Then $x^{p-1} \equiv 1 \mod p$.